home *** CD-ROM | disk | FTP | other *** search
- /*
- * Copyright (c) 1985 Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms are permitted
- * provided that this notice is preserved and that due credit is given
- * to the University of California at Berkeley. The name of the University
- * may not be used to endorse or promote products derived from this
- * software without specific prior written permission. This software
- * is provided ``as is'' without express or implied warranty.
- *
- * All recipients should regard themselves as participants in an ongoing
- * research project and hence should feel obligated to report their
- * experiences (good or bad) with these elementary function codes, using
- * the sendbug(8) program, to the authors.
- */
-
- #ifndef lint
- static char sccsid[] = "@(#)log.c 5.2 (Berkeley) 4/29/88";
- #endif /* not lint */
-
- /* LOG(X)
- * RETURN THE LOGARITHM OF x
- * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS)
- * CODED IN C BY K.C. NG, 1/19/85;
- * REVISED BY K.C. NG on 2/7/85, 3/7/85, 3/24/85, 4/16/85.
- *
- * Required system supported functions:
- * scalb(x,n)
- * copysign(x,y)
- * logb(x)
- * finite(x)
- *
- * Required kernel function:
- * log__L(z)
- *
- * Method :
- * 1. Argument Reduction: find k and f such that
- * x = 2^k * (1+f),
- * where sqrt(2)/2 < 1+f < sqrt(2) .
- *
- * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- * log(1+f) is computed by
- *
- * log(1+f) = 2s + s*log__L(s*s)
- * where
- * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
- *
- * See log__L() for the values of the coefficients.
- *
- * 3. Finally, log(x) = k*ln2 + log(1+f). (Here n*ln2 will be stored
- * in two floating point number: n*ln2hi + n*ln2lo, n*ln2hi is exact
- * since the last 20 bits of ln2hi is 0.)
- *
- * Special cases:
- * log(x) is NaN with signal if x < 0 (including -INF) ;
- * log(+INF) is +INF; log(0) is -INF with signal;
- * log(NaN) is that NaN with no signal.
- *
- * Accuracy:
- * log(x) returns the exact log(x) nearly rounded. In a test run with
- * 1,536,000 random arguments on a VAX, the maximum observed error was
- * .826 ulps (units in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following constants.
- * The decimal values may be used, provided that the compiler will convert
- * from decimal to binary accurately enough to produce the hexadecimal values
- * shown.
- */
-
- #if defined(vax)||defined(tahoe) /* VAX D format */
- #include <errno.h>
- #ifdef vax
- #define _0x(A,B) 0x/**/A/**/B
- #else /* vax */
- #define _0x(A,B) 0x/**/B/**/A
- #endif /* vax */
- /* static double */
- /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
- /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
- /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */
- static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
- static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
- static long sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)};
- #define ln2hi (*(double*)ln2hix)
- #define ln2lo (*(double*)ln2lox)
- #define sqrt2 (*(double*)sqrt2x)
- #else /* defined(vax)||defined(tahoe) */
- static double
- ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
- ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
- sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */
- #endif /* defined(vax)||defined(tahoe) */
-
- double log(x)
- double x;
- {
- static double zero=0.0, negone= -1.0, half=1.0/2.0;
- double logb(),scalb(),copysign(),log__L(),s,z,t;
- int k,n,finite();
-
- #if !defined(vax)&&!defined(tahoe)
- if(x!=x) return(x); /* x is NaN */
- #endif /* !defined(vax)&&!defined(tahoe) */
- if(finite(x)) {
- if( x > zero ) {
-
- /* argument reduction */
- k=logb(x); x=scalb(x,-k);
- if(k == -1022) /* subnormal no. */
- {n=logb(x); x=scalb(x,-n); k+=n;}
- if(x >= sqrt2 ) {k += 1; x *= half;}
- x += negone ;
-
- /* compute log(1+x) */
- s=x/(2+x); t=x*x*half;
- z=k*ln2lo+s*(t+log__L(s*s));
- x += (z - t) ;
-
- return(k*ln2hi+x);
- }
- /* end of if (x > zero) */
-
- else {
- #if defined(vax)||defined(tahoe)
- extern double infnan();
- if ( x == zero )
- return (infnan(-ERANGE)); /* -INF */
- else
- return (infnan(EDOM)); /* NaN */
- #else /* defined(vax)||defined(tahoe) */
- /* zero argument, return -INF with signal */
- if ( x == zero )
- return( negone/zero );
-
- /* negative argument, return NaN with signal */
- else
- return ( zero / zero );
- #endif /* defined(vax)||defined(tahoe) */
- }
- }
- /* end of if (finite(x)) */
- /* NOTREACHED if defined(vax)||defined(tahoe) */
-
- /* log(-INF) is NaN with signal */
- else if (x<0)
- return(zero/zero);
-
- /* log(+INF) is +INF */
- else return(x);
-
- }
-